|
1: |
|
from(X) |
→ cons(X,n__from(n__s(X))) |
2: |
|
sel(0,cons(X,XS)) |
→ X |
3: |
|
sel(s(N),cons(X,XS)) |
→ sel(N,activate(XS)) |
4: |
|
minus(X,0) |
→ 0 |
5: |
|
minus(s(X),s(Y)) |
→ minus(X,Y) |
6: |
|
quot(0,s(Y)) |
→ 0 |
7: |
|
quot(s(X),s(Y)) |
→ s(quot(minus(X,Y),s(Y))) |
8: |
|
zWquot(XS,nil) |
→ nil |
9: |
|
zWquot(nil,XS) |
→ nil |
10: |
|
zWquot(cons(X,XS),cons(Y,YS)) |
→ cons(quot(X,Y),n__zWquot(activate(XS),activate(YS))) |
11: |
|
from(X) |
→ n__from(X) |
12: |
|
s(X) |
→ n__s(X) |
13: |
|
zWquot(X1,X2) |
→ n__zWquot(X1,X2) |
14: |
|
activate(n__from(X)) |
→ from(activate(X)) |
15: |
|
activate(n__s(X)) |
→ s(activate(X)) |
16: |
|
activate(n__zWquot(X1,X2)) |
→ zWquot(activate(X1),activate(X2)) |
17: |
|
activate(X) |
→ X |
|
There are 16 dependency pairs:
|
18: |
|
SEL(s(N),cons(X,XS)) |
→ SEL(N,activate(XS)) |
19: |
|
SEL(s(N),cons(X,XS)) |
→ ACTIVATE(XS) |
20: |
|
MINUS(s(X),s(Y)) |
→ MINUS(X,Y) |
21: |
|
QUOT(s(X),s(Y)) |
→ S(quot(minus(X,Y),s(Y))) |
22: |
|
QUOT(s(X),s(Y)) |
→ QUOT(minus(X,Y),s(Y)) |
23: |
|
QUOT(s(X),s(Y)) |
→ MINUS(X,Y) |
24: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ QUOT(X,Y) |
25: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ ACTIVATE(XS) |
26: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ ACTIVATE(YS) |
27: |
|
ACTIVATE(n__from(X)) |
→ FROM(activate(X)) |
28: |
|
ACTIVATE(n__from(X)) |
→ ACTIVATE(X) |
29: |
|
ACTIVATE(n__s(X)) |
→ S(activate(X)) |
30: |
|
ACTIVATE(n__s(X)) |
→ ACTIVATE(X) |
31: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ZWQUOT(activate(X1),activate(X2)) |
32: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ACTIVATE(X1) |
33: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ACTIVATE(X2) |
|
The approximated dependency graph contains 4 SCCs:
{20},
{22},
{25,26,28,30-33}
and {18}.