|
| 1: |
|
from(X) |
→ cons(X,n__from(n__s(X))) |
| 2: |
|
sel(0,cons(X,XS)) |
→ X |
| 3: |
|
sel(s(N),cons(X,XS)) |
→ sel(N,activate(XS)) |
| 4: |
|
minus(X,0) |
→ 0 |
| 5: |
|
minus(s(X),s(Y)) |
→ minus(X,Y) |
| 6: |
|
quot(0,s(Y)) |
→ 0 |
| 7: |
|
quot(s(X),s(Y)) |
→ s(quot(minus(X,Y),s(Y))) |
| 8: |
|
zWquot(XS,nil) |
→ nil |
| 9: |
|
zWquot(nil,XS) |
→ nil |
| 10: |
|
zWquot(cons(X,XS),cons(Y,YS)) |
→ cons(quot(X,Y),n__zWquot(activate(XS),activate(YS))) |
| 11: |
|
from(X) |
→ n__from(X) |
| 12: |
|
s(X) |
→ n__s(X) |
| 13: |
|
zWquot(X1,X2) |
→ n__zWquot(X1,X2) |
| 14: |
|
activate(n__from(X)) |
→ from(activate(X)) |
| 15: |
|
activate(n__s(X)) |
→ s(activate(X)) |
| 16: |
|
activate(n__zWquot(X1,X2)) |
→ zWquot(activate(X1),activate(X2)) |
| 17: |
|
activate(X) |
→ X |
|
There are 16 dependency pairs:
|
| 18: |
|
SEL(s(N),cons(X,XS)) |
→ SEL(N,activate(XS)) |
| 19: |
|
SEL(s(N),cons(X,XS)) |
→ ACTIVATE(XS) |
| 20: |
|
MINUS(s(X),s(Y)) |
→ MINUS(X,Y) |
| 21: |
|
QUOT(s(X),s(Y)) |
→ S(quot(minus(X,Y),s(Y))) |
| 22: |
|
QUOT(s(X),s(Y)) |
→ QUOT(minus(X,Y),s(Y)) |
| 23: |
|
QUOT(s(X),s(Y)) |
→ MINUS(X,Y) |
| 24: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ QUOT(X,Y) |
| 25: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ ACTIVATE(XS) |
| 26: |
|
ZWQUOT(cons(X,XS),cons(Y,YS)) |
→ ACTIVATE(YS) |
| 27: |
|
ACTIVATE(n__from(X)) |
→ FROM(activate(X)) |
| 28: |
|
ACTIVATE(n__from(X)) |
→ ACTIVATE(X) |
| 29: |
|
ACTIVATE(n__s(X)) |
→ S(activate(X)) |
| 30: |
|
ACTIVATE(n__s(X)) |
→ ACTIVATE(X) |
| 31: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ZWQUOT(activate(X1),activate(X2)) |
| 32: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ACTIVATE(X1) |
| 33: |
|
ACTIVATE(n__zWquot(X1,X2)) |
→ ACTIVATE(X2) |
|
The approximated dependency graph contains 4 SCCs:
{20},
{22},
{25,26,28,30-33}
and {18}.